Prozessorientiertes Reinforcement Learning: Grafische Modellierung zur Unterstützung der Erklärbarkeit

Publikationstyp
Konferenz
Autor(en)
Clemens Schreiber , Gunther Schiefer , Sascha Alpers , Marius Take und Andreas Oberweis
Jahr
2020
Buchtitel
Modellierung
Abstract
Das Verstärkende Lernen (Reinforcement Learning) stellt einen wichtigen Ansatz für Systeme der Künstlichen Intelligenz (KI-Systeme) dar. Dabei steigt der Anspruch an die Erklärbarkeit der KI-Systeme mit zunehmender Risikobehaftung der zu lösenden Problemstellungen. Um den Lernprozess beim Verstärkenden Lernen nachvollziehbar zu machen, verfolgen wir einen prozessorientierten Lernansatz. Zunächst soll der Lernprozess mit Hilfe eines grafischen Prozessmodells abgebildet werden, um eine Visualisierung der einzelnen Lernschritte zu ermöglichen. Diese Prozessmodellierung soll durch die Verwendung von Process Mining Methoden erfolgen. In einem weiteren Schritt soll den Anwendern die Möglichkeit gegeben werden, anhand der Prozessmodelle die Entscheidungsfindung der Algorithmen zu beeinflussen. Eine mögliche Art der Einflussnahme ist zum Beispiel die Beschränkung des Hypothesenraumes, der mit Hilfe des Verstärkenden Lernens erkundet werden soll. Auf diese Weise agiert das Prozessmodell als grafische Schnittstelle zwischen maschinellem Lernprozess und Anwender. Das wesentliche Ziel dieses neuen Ansatzes ist es, die Erklärbarkeit von KI-Systemen und die Kooperationsfähigkeit zwischen Anwendern und KI-Systemen zu verbessern. Dieser Artikel beschreibt die Grundlagen, um dieses Ziel mit Hilfe von prozessorientiertem Reinforcement Learning zu erreichen.
Link
http://ceur-ws.org/Vol-2542/MOD-KI6.pdf
Download .bib
Download .bib
Eingetragen von
Marius Take