ABOUT US
The FZI Research Center for Information Technology at the Karlsruhe Institute of Technology is a non-profit institution for applied research in information technology and technology transfer. Its task is to provide businesses and public institutions with the latest research findings in information technology. It also qualifies young researchers for their career in academics or business as well as self-employment. Led by professors from different faculties, research teams at the FZI interdisciplinarily develop and prototype concepts, software, hardware and system solutions for their clients. Scientific excellence and interdisciplinary practice are therefore well established at the FZI.
As a non-profit institution of civil law, the FZI works for and with companies and public institutions of every size: small businesses and concerns, regional administrations, the Federal Government and the Federal States of Germany, and the EU.
The FZI is accredited by the PROFIBUS user organization „PROFIBUS Nutzerorganisation e.V. (PNO)” as a competence center and test laboratory for the communication standards PROFIUS Basic and PROFIBUS PA.
In addition to that, the FZI is certified by the KNX Association as a test laboratory for the communication standard KNX according to ISO 17025.
All divisions of the FZI are certified according to DIN EN ISO 9001:2008.

CONTACT US
FZI Forschungszentrum Informatik
FZI House of Living Labs
Haid-und-Neu-Straße 5a
76131 Karlsruhe

CONTACT
Dr.-Ing. Martin Hillenbrand
Phone: +49 721 9654-162
Email: hillenbrand@fzi.de

PROFIBUS TEST LABORATORY AT THE FZI
For Devices with PROFIBUS DP and PROFIBUS PA Interfaces
QUALITY CREATES TRUST

Your field devices meet the high quality demands of automation technology. With a certificate, you prove it to your customers and thereby enhance confidence in your devices. This is the basis for the success of your devices on the market.

The FZI Research Center for Information Technology is accredited by the PROFIBUS user organization „PROFIBUS Nutzerorganisation e.V. (PNO)“ as a competence center and test laboratory for the PROFIBUS communication standard. All test engineers at the FZI are Certified PROFIBUS Engineers.

THE WAY TO YOUR DEVICE CERTIFICATE

1. On the basis of your request as a device manufacturer, we make you a written offer on the certification test.
2. After commissioning, you submit the device to be tested as well as the related documents to us.
3. The tests are carried out on the basis of agreed test guidelines. If any problems should arise, we will work out a solution with you.
4. You will receive a test report after the certification test is done.
5. With a positive test report, you can apply for a certificate at the office of the PNO.

CONFIDENTIALITY

We handle your devices with care. The tests are carried out within separate and restricted premises. When your device is not being tested, it is kept safe.

ORGANIZATIONAL STRUCTURE

The PROFIBUS test laboratory at the FZI is organizationally assigned to the research division „Embedded Systems and Sensors Engineering (ESS)“. The researchers at the ESS division investigate innovative technologies, design and test methods as well as applications for embedded systems.

The PROFIBUS test laboratory is located in the FZI Living Lab smartAutomation, an evaluation platform for automation systems for industrial application.

OUR SERVICES

As an experienced research partner, we support you in the research and realization of innovative ideas and technologies. Your options of collaboration with the FZI range from a collaborative partnership in public-funded projects to contract research for a specific application problem.

In addition to the testing of devices with the interfaces PROFIBUS DP and PROFIBUS PA and the related consultation, our portfolio comprises further development and research services in the field of industrial automation:

- Consultation and development of safety and security solutions (ISO 61508, ISO 13849, ISO 15408, et al.)
- Hardware platforms for field devices with conventional controllers and application-specific system-on-chip architectures
- Low-power design for bus-powered field devices
- Software-based services for automation technology such as monitoring and diagnostic applications
- Design, analysis, evaluation, and comparison of design alternatives for device networks and industrial communication networks