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Abstract
Supply Chain Management (SCM) is the process of planning, implementing, and controlling 

the operations of a supply chain in an efficient way. Supply Chain Planning – as an impor-

tant subtask of SCM – is the process of allocating resources over a network of interrelated 

locations with the goal to satisfy customer requirements. Operations Researchers support 

by developing adequate mathematical optimization models and providing suitable solution 

procedures. In this paper we discuss what adequate could mean. Therefore, we may ask 

several questions concerning “optimality” in Supply Chain Planning under causal and tem-

poral uncertainty: What is an optimal solution? When is it optimal? For how long is it opti-

mal? How should the design of a supply chain be changed when conditions and require-

ments ask for new structures? In particular, we discuss new approaches to Supply Chain 

Planning in order to give an optimal transformation from an initial solution over multiple 

periods to a desired one rather than just specifying an optimal snapshot solution. Related 

to this idea, we look at the impact of recent technological developments like the Internet of 

Things or Industry 4.0 on supply chains, and we show how online optimization can help to 

cope with real-time challenges. Moreover, we re-coin the concept of risk in the realm of 

Supply Chain Planning. Here the question is how to measure supply chain specific risks and 

how to incorporate them into mathematical models.



Is Optimal Still Good Enough: Time Traps in Supply Chains

6

1 Introduction
Supply Chain Planning – as an important subtask of Supply Chain Management – is the 

process of allocating resources over a network of interrelated locations with the goal to 

satisfy customer requirements. It spans all movements and storage of raw materials, work-

in-process inventory, and finished goods from the point-of-origin to the point-of-consumpti-

on. Operations Researchers support Supply Chain Planning by developing mathematical 

optimization models and providing suitable solution procedures. 

The concept of optimality describes the property of a solution which imposes the best 

feasible decision obtainable under specific conditions. These conditions need to be identi-

fied, gathered, and appropriately expressed by formulating mathematical models, which 

abstract from restrictions of the real world. If models do not capture the most relevant 

features and do not yield to applicable tasks or useful managerial insights, their solutions 

will never be regarded as good enough for practical implementation – although they are 

optimal.

Especially global supply chains have to face a rich variety of potential requirements. Not all 

of them can be considered within constraints, but some of them must be respected. Since 

Supply Chain Planning strongly depends on the ability to grasp future developments in order 

to balance supply and demand, the main challenge during the identification of important 

requirements is imposed by the weighting and the incorporation of characteristics that de-

scribe the future. Major components of the future are time and uncertainty. While the for-

mer refers to the amount of future to consider, the latter describes the degree and type of 

knowledge available about future developments. 

In this paper we claim that the existing optimization models for supporting Supply Chain 

Planning lack to address the future appropriately and thus, do not assure that optimal so-

lutions represent applicable plans and provide intelligible benefits. We address three major 

topics that overlap with respect to their treatment of the future, namely: online optimization 

models, multi-period planning models, and risk-aware models. 

Handling short-term future uncertainty can be accomplished by online optimization models 

(cf. [20]). The discussion that we provide in the current paper regarding online optimization 

approaches gives a contribution to answering the following question: What is an appropri-

ate optimality concept with respect to a steady information inflow as facilitated by modern 

ICT (Internet of Things and Industry 4.0)?

Multi-period planning models are of great relevance in the context of strategic Supply Chain 

Planning, e.g., in Supply Chain Network Design (see [2] and [47]). Related with this aspect, 

the relevant question that we aim at answering in this paper is the following: How long can 

we consider a partial solution as optimal in a dynamic problem setting? 

The consideration of unexpected mid- to long-term developments can be subsumed under 

the “family” of risk-aware formulations [32]. Although risk-aware model formulations can 

be found in the literature, the definition of supply chain risk is most often treated in a cur-

sory manner and leads to oversimplification and underestimation. By putting the focus on 

time, in the current work we answer the following central question: How does supply chain 

risk evolve over time? 
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The three previous paragraphs show a central aspect in the current work: time. Figure 1 

provides a simplistic view on how planning for future activities is currently integrated with 

time. In particular, we emphasize the fact that most of today‘s planning and scheduling 

systems rely on forecast-based approaches [57]. A major contribution of the current paper 

is to show that considering alternative views to this typical “approach” may render better 

solutions when dealing with time and uncertainty. 

In the following sections we discuss how the three model types mentioned above can hand-

le time and/or uncertainty and also how, by doing so, they can help improving Supply Chain 

Planning decisions. We offer insights about common flaws as well as new concepts and 

definitions that may be of great help for achieving our goal. Furthermore, we provide appro-

priate illustrations to show the relevance of the aspects discussed. 

The remainder of this paper is organized as follows. Section 2 discusses limits of optimiza-

tion paradigms and reveals how online optimization with look-ahead may serve as an alter-

native. Section 3 uncovers inadequateness of single period planning models. Section 4 re-

veals how the flawed perception of supply chain risk leads to an imprecise and incomplete 

definition of this concept. In Section 5 we highlight the links between the major aspects 

discussed in Sections 2 - 4 and we present some conclusions drawn from the work done.

2 Online Optimization with Look-Ahead
Operational tasks in Supply Chain Planning are often coined by data being received in a 

steady flow of information. Hence, optimization algorithms have to be employed repetitively 

over time and decisions have to be communicated on-the-line. For that reason, short-term 

decision making problems arising in environments with dynamic information flows are 

called online optimization problems [26]. 

While in the classical discipline of online optimization decisions are made only upon know-

ledge of the past and the current information, the field of online optimization with look-

ahead additionally takes into account a preview of certain future information [23] which can 

be used in an event-based planning approach as indicated in Figure 2. This information is 

made available through so-called look-ahead devices such as barcode scanners, RFID or 

GPS chips, or sensor modules.

Figure 1: Division of the time line under forecast-

based planning methods in current APS systems.
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Considering the transition from static to dynamic information provision in Supply Chain Pl-

anning through the mentioned standard devices, we realize that these technologies allow us 

to turn the uncertain future gradually into a certain one. In new application fields such as 

Industry 4.0 or Advanced Manufacturing it is even an essential prerequisite to know at each 

point what is currently going on [60]. However, only because technologies have matured, it 

does not imply that the scientific methods also did. Quite to the contrary, decision making 

in near real time and online optimization with look-ahead can still be seen in their infancy 

or early childhood [29] and a systematic approach to optimization under uncertainty in near 

real time is not yet established [20]. The core reason for this can be traced back to the 

difficulties in finding a suitable concept of optimality that can be applied in sequential deci-

sion making under incomplete information. In Section 2.1 we discuss weak links of different 

optimality concepts when applied to online settings. Section 2.2 then shows that some of 

the issues can be resolved in a general framework for online optimization with look-ahead. 

Lastly, Section 2.3 exemplifies the benefits of this approach.

2.1 Flaws
Real-valued key performance indicators (KPIs) are often used to evaluate performance. 

Hence, a straightforward approach would be to define a function KPI (f1,...,fm,x1,...,xn) which 

gives the KPI value for given inputs f1,...,fm and selected decisions x1,...xn with m, n ∈ ℕ. 
Because the ≤-relation yields a total order on ℝ, this concept allows us to figure out under 

which inputs which decisions are needed to achieve the best value of KPI. The simplicity of 

the KPI-concept with respect to “what is good” and “what is bad” is a major reason for its 

success both in industry and academia. However, it possesses several drawbacks concer-

ning time and uncertainty.

2.1.1 Neglect of Sequentiality
The function KPI (f1,...,fm,x1,...,xn) suggests that KPI can be evaluated immediately once all 

of the arguments (inputs and decisions) are given. Unfortunately, this becomes real only 

when the planning horizon has expired. Contrarily, the entrepreneurial practice in the ope-

rational planning horizon is characterized by decisions x1,...,xn to be made successively with

Figure 2: Division of the time line under conside-

ration of near-future data as transmitted by look-

ahead devices.
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out all of the inputs f1,...,fm known. Mathematically speaking, we seek for a sequential opti-

mization method under imperfect information. Clearly, without overall knowledge on the 

inputs, we cannot expect to find decisions x1, x2,...,xn one after another such that KPI 
(f1,...,fm,x1,...,xn) is optimal in retrospective. Thus, there is neither a natural concept of opti-

mality in online optimization nor is there any evidence that solving partial problems to opti-

mality leads to an optimal overall solution [20]. Although we cannot expect optimality of the 

overall decision vector x1,...,xn many members of the online optimization community use 

omniscience as the basis for their substitute concept of optimality –competitive analysis (cf. 

also [10]): In a minimization problem, an algorithm is called c-competitive if for all input 

realizations, the decisions of this algorithm lead to a KPI-value at most c-times as large as 

the value of KPI that results from an optimal (hypothesized) offline algorithm.

According to competitive analysis, an optimal online algorithm then is c-competitive algo-

rithm with the smallest possible value of c among all online algorithms. It is easy to find 

numerous criticisms for this substitute concept of optimality [17], [26], e.g., the limited si-

gnificance for practical applications due to exclusive worst case considerations or the reduc-

tion to a single number. In fact, the counterintuitivity of this measure has been observed in 

practice: for instance, in the paging problem of memory management, it is known from 

experiments that look-ahead improves the performance whereas in competitive analysis 

this cannot be replicated [18]. Nonetheless, the real time character of many industrial pl-

anning problems [28] shows that there is a need for a comprehensive framework for online 

methods providing answers to the following questions: When should we solve a snapshot 

problem? Under which objective should we solve the snapshot problem? Which method 

(exact/heuristic) should we use to solve the snapshot problem? How does the solution type 

of the snapshot problem migrate to the overall problem, i.e., is the effort of generating an 

optimal partial solution justified? The modeling part of the framework in Section 2.2 will 

help in addressing these questions.

2.1.2 Oblivion to Uncertainty
Part of the data input required by operational planning problems is generated by event oc-

currences which cannot be known in advance. Hence, one or another of the inputs f1,...,fm 

is afflicted with uncertainty. Mathematically, these inputs as well as KPI are random varia-

bles. Hence, what is needed for comprehensive decision making is more detailed informa-

tion on the distribution of the KPI-value and how it depends on the uncertain input data. 

Translated into mathematics, we need a stochastic model – although in many applications 

there is often no reliable stochastic information available. 

In order to compare random variables, stochastic orders have been introduced (cf. also 

[46]). The simplest approach uses expectations: random variable KPI1 is said to be sto-

chastically smaller in expectation than random variable KPI2 if and only if the expectation 

of KPI1 is smaller than the expectation of KPI2.

An alternative is to consider stochastic dominance defined as follows: random variable KPI1 

is stochastically smaller than random variable KPI2 if for all ρ ∈ ℝ it holds that the probabi-

lity for KPI1 being smaller than ρ is larger or equal than the probability of KPI2 being smaller 
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than ρ, i.e., the ≤-relation is transferred to probabilities. 

Unfortunately, in the expectation-based definition, variability and outliers are ignored; on 

the other hand, stochastic dominance does not admit a total order among random variab-

les. To the best of the authors‘ knowledge, there is not a natural stochastic concept of op-

timality that allows us to compare arbitrary random variables. The evaluation part of the 

framework in Section 2.2 will present a possibility to evaluate the quality of algorithms 

without having to incorporate strong probabilistic assumptions.

2.2 New Concepts and Definitions
Based on [20] and [23] we present a formal framework for online optimization problems 

with look-ahead. We subdivide it into two parts: a modeling part and a performance evalu-

ation part. For compatibility with the related literature, we denote the sequence of input 

elements by = (σ1,..., σm). Instead of using a function KPI we will denote the performance 

of an algorithm ALG on input σ by ALG(σ).

2.2.1 Modeling
In offline optimization, σ is known in advance. In contrast, online optimization assumes that 

σ is not known entirely at the beginning of the planning horizon [10]. An online optimizati-

on problem is characterized by the fact that partial decisions have to be made by ALG re-

petitively based on partial knowledge on σ. Hence, ALG has to be applied to several sub-

sequences σ≤i= (σ1,..., σi) with i ≤ m and monotonously increasing i. We refine these notions 

by introducing online optimization problems with look-ahead to obtain a smooth passage 

between online and offline optimization. To this end, we view an online optimization prob-

lem with look-ahead as an optimization problem that is derived from a reference online 

optimization problem (without look-ahead capabilities), but with an improved process of 

information release [20]. 

In order to advance to a more formal definition of the look-ahead setting, we recall a gene-

ral definition of an optimization problem [7]: a single-objective optimization problem π is a 

quadruple (I, S, F, opt) where I is a set of instances, S is a (multi-valued) function returning 

the set of solutions, S(i) for any i ∈ I, f is a function returning the objective value for any pair 

(i, s) ∈ I × S(i), and opt ∈ {min, max} is the optimization goal. This definition works well for 

offline problems, but since it does not address sequentiality, applying it to the online setting 

is cumbersome. To consider sequentiality explicitly, we refine this definition with two ele-

ments [23]: first, we ascribe a so-called instance revelation rule to each instance; second, 

we ascribe a so-called rule set to each problem.

We define an instance revelation rule as a rule that governs the temporal course of events 

in the release of information on the problem instance. Thus, it determines how information 

becomes known over time. On the other hand, once the information is known we may ask 

what we can do with it. Here the rule set comes into play. A rule set of a problem is a set 

of restrictions on the solution to an instance of the problem. Thus, it determines how infor-

mation can be used when it became known already. Summing up, an online optimization 

problem can be described as a quadruple (I, S, F, opt) along with a rule set and an instance 
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Figure 3: Effect of look-ahead on a problem and 

its instances.

revelation rule for each instance i ∈ I.
With these two extensions we define an online optimization problem with look-ahead as 

an online optimization problem that arises from a reference online optimization problem 

through the instance-wise exchange of the instance revelation rule by an improved instance 

revelation rule which ensures that at each point in time the information known in the prob-

lem with look-ahead is comprising the information known in the reference problem. Optio-

nally, the rule set of the reference problem may be exchanged with another rule set which 

explicitly makes use of the look-ahead information. Figure 3, taken from [23], summarizes 

the situation.

2.2.2 Performance Evaluation 
In order to depict algorithm quality in a comprehensive and differentiated way, we take on 

an approach which essentially consists of a distributional analysis of both the individual 

outcome of an algorithm as well as of the relative outcome of an algorithm with respect to 

a benchmarking algorithm [21], [23], [33]. The individual outcome of an online algorithm 
ALG provides an overall image of algorithm behavior over all instances whereas the out-

come of ALG relative to that of a reference online algorithm ALGref yields a comparison to a 

suitable benchmark. We first provide definitions for the objective value and performance 

ratio. Given an optimization problem (I, S, F, opt), an instance i ∈ I, an algorithm ALG, and 

a reference algorithm ALGref, let sALG ∈ S(i) and sALG, sALGref 
∈ S(i) be the solutions selected 

by ALG and ALGref, respectively. We define

υALG(i) = f(i, sALG) ,

the objective value of ALG on i, and

𝑟ALG, ALGref 
(i) =  

f(i, sALG)   
,

the performance ratio of ALG relative to ALGref on i.

f(i, sALGref
)
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In the next step, we compute the so-called counting distribution of both the objective value 

and the performance ratio. A counting distribution is a distribution where each possible 

realization of the random variable under consideration (in our case the random variable 

describes the instance from set I) is weighted equally such that no (possibly biased) prior 

information or preferences are required. The resulting distribution hence objectively counts 

how many out of all realizations would lead to a certain objective value or performance 

ratio, respectively. Figure 4 schematically shows how the information about the objective 

values attained over the instance set I can be translated into the corresponding counting 

distribution function. Considering that in ad-hoc decision making it is often impossible to 

make any prediction on what an algorithm will have to cope with next, this approach pre-

sents a natural way of displaying the range of upcoming uncertainty that is inspired by 

maximum entropy considerations [35],[36]. 

Formally, we can define the counting distribution function of the objective value of ALG 

over I by

FALG (υ) = 
| i ∈ I| υALG (i) ≤ υ|

   .

The counting distribution function of the performance ratio of ALG relative to ALGref over 
I is defined as

FALG, ALGref
(𝑟) =  

| i ∈ I| 𝑟 ALG, ALGref 
(i) ≤ 𝑟 | 

  .

We can provide ALG and ALGref with different levels of look-ahead in order to examine the 

value of additional information.

|I|

|I|

Figure 4: Objective value of ALG over instance set 

I and corresponding counting distribution func-

tion plot.
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2.3 Examples and Results
The general framework of online optimization with look-ahead has been instantiated in a 

number of theoretical problems and practical applications [20], [22]. Along with the outli-

ned performance measurement approach it facilitated an evaluation of the value of look-

ahead and the identification of promising algorithms and control strategies.

2.3.1 Truck Entrance Control
In [22], it is examined how the arrival process of trucks at the main gate of a factory site 

can be coordinated by the gate operators in order to ensure that the raw materials loaded 

on the trucks are delivered to the production sites in time. To this end, it is assumed that 

the gate consists of four check-in counters where the trucks coming from the road have to 

enqueue in one of them and be served first before accessing the factory site. The leading 

research goal was to check whether the operator decisions can be improved by additional 

data collection and transmission technologies as considered in Industry 4.0 and Advanced 

Manufacturing settings. To this end, we consider six different technology scenarios which 

could equip the decision maker with different types of real-time and look-ahead data:

1.	No additional data, i.e., drivers choose the lane themselves (baseline scenario).

2.	Additional data about the lane occupations (in terms of the number of trucks), e.g., 

through a camera system.

3.	Additional data about the current check-in counter statuses, e.g., through electronic 

data interchange.

4.	Additional data about the expected (remaining) workloads for gate service of all trucks 

in a lane, e.g., through status protocols.

5.	Additional data about the types and amounts of loaded raw materials and about the 

production demands at factory site, e.g., through forwarding truck load information.

6.	Additional data about the geographical position of the trucks, e.g., by track and trace 

technology.

Observe that scenarios 2, 3, 4 are concerned with gate data, scenario 5 considers load and 

demand data, and scenario 6 takes into account spatial truck data which can be translated 

into a time look-ahead. For each scenario, simple rule-based heuristics were applied that 

make use of the provided information in a straightforward manner to minimize the penalty 

costs that would result from stopped production due to missing raw materials. The simula-

tion study comprised 100 simulation replications of a 14-hour work day with 300 trucks 

arriving randomly. Gate service is assumed to take between 2 and 5 minutes, but break-

downs of lane counters with a duration ranging from 15 to 100 minutes may occur.

The simulation results (depicted in Figure 5) show that the company should refrain from 

using the baseline policy where drivers decide themselves on the queuing process rather 

than the gate operators.

It can be observed that simple structured information such as number of trucks currently in 

some lane leads to an average reduction of daily penalty costs of approximately 3%. Also 

in a distributional analysis the benefit of this type of additional information is clearly visible 

from a stable left-shift of the counting distribution function corresponding to scenario 2 
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when compared to scenario 1. Moreover, all strategies making use of gate data (scenarios 

2, 3, and 4) lead to average reductions at a similar level of roughly 3%. The negligible dif-

ferences in the average case analysis is confirmed by the counting distribution functions. 

Since for all three scenarios, the plots intersect with each other, there is no point in decla-

ring any of the three technological scenarios to be superior.

When we can additionally utilize factory demand data and the truck loading information, we 

can better match supply and demand information leading to another penalty cost reduction 

of around 4.5% on average. On the other hand, there is no substantial surplus from additi-

onally using positioning data of the trucks (corresponding to time look-ahead) as they are 

still approaching the gate on the road. Given that the gate plays the role of a bottleneck in 

the entire production system, there are always enough trucks with a requested load availa-

ble in the immediate vicinity of the gate such that the information about what happens on 

the road becomes nearly irrelevant. This is also confirmed by the counting distribution 

functions corresponding to scenarios 5 and 6 whose plots are intersecting permanently 

making it impossible to claim that one of the technologies is better than the other. Summa-

rizing, scenario 5 (where truck loads and factory demands as well as the lane statuses are 

forwarded to the operators) represents the most recommendable control strategy. For 

further details, see [22].

2.3.2 Benefit of Look-Ahead
Considering the increased usage of data collection and transmission devices, we can tackle 

short-term uncertainty by utilizing look-ahead devices, which make parts of the previously 

uncertain future certain. To describe the structure of an online problem directly, a classifi-

Figure 5: Average penalty costs (left) and empiri-

cal counting distribution functions of penalty 

costs (right) in 10.000 monetary units (case stu-

dy investigated in [22]).
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cation scheme α | β | γ | δ was proposed in [20] and [23]. In this scheme, α describes the 

look-ahead type (indicating the instance revelation rule, e.g., request look-ahead, time look-

ahead, property-based look-ahead); β gives the processing mode and order (indicating 

handling aspects of the rule set); γ yields the processing accessibility (indicating temporal 

aspects of the rule set); finally, δ indicates the algorithm execution mode. Using this classi-

fication scheme it is then possible to organize literature on applications of online optimiza-

tion with look-ahead. In particular, it becomes apparent that different authors consider 

look-ahead differently. 

The classification scheme is then used as a starting point for the analysis of look-ahead 

effects in applications. Depending on the complexity of the problem setting, different ap-

proaches were used in [20]. Using a theoretical approach the authors carried out an exact 

distributional analysis of algorithm performance in rudimentary versions of academic prob-

lems such as the traveling salesman problem (TSP) and the bin packing problem (BPP). 

The analysis reproduced an exact image of algorithm behavior over all input sequences 

(including competitive analysis). Already in very simple problem settings it is observed that 

the magnitude of the look-ahead effect depends strongly on the problem itself. Improve-

ments in the BPP are small and hard to obtain, whereas in the TSP additional look-ahead 

immediately helps. Complementing the theoretical results, the authors followed an experi-

mental approach and conducted numerical experiments on several standard problems 

(TSP, BPP, machine scheduling, paging). Again, significant differences were observed de-

pending on the problem settings. Based on the results, an information pool delivering quick 

explanations for look-ahead effects in different problem classes was built. An important 

result was that over all problem classes sophisticated re-optimization algorithms outperfor-

med simple methods only in case of large look-ahead. For small to medium look-ahead, 

simple heuristics often even fare better. Finally, the effect of look-ahead in two real world 

applications (manual order picking system, pickup-and-delivery service) was analyzed by 

simulation. These systems exhibit a higher complexity due to additional random events, 

realistic restrictions upon operations, and relevance of multiple performance criteria. For 

explaining the observed behavior of performance criteria over time, it was possible to make 

use of the information pool that was built up before in the theoretical and experimental 

approach for elementary problems.

The examples presented above show that the framework of online optimization with look-

ahead along with the presented approach of performance measurement offers a tool for 

identifying look-ahead effects and successively designing control strategies for logistics 

systems. We now leave the online setting and turn to general multi-period problems.

3 Multi-Period Planning
In the previous section we concluded that online optimization with look-ahead is a means 

for capturing short-term uncertainty and thus to obtain solutions that can better anticipate 

the near future. This is of great relevance for operational tasks in SCM. However, when we 

focus into strategic or tactical decisions, we often need to go further into the future. In fact, 

such decisions often have a long lasting effect. This is the case, for instance, with the Sup-
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ply Chain Network Design (SCND). For instance, when a new production center is establis-

hed or a large central distribution center is installed, hardly will a company accept changes 

to these decisions at least for some considerable time.

The simplest and most common way for embedding the future into a model consists of 

forecasting the relevant parameters and then assuming the entire future as a single static 

block (online optimization with certain look-ahead goes in this direction). This leads to a 

so-called static model: a decision is made here-and-now – no recourse is possible. An al-

ternative is to explicitly consider time in the models. In this case, we may either comple-

ment the online optimization models with the future that is beyond the one defined by the 

short-term look-ahead or we can simply consider the future starting from the present set-

ting. As we discuss later in this section, embedding time explicitly into optimization models 

gives the possibility of capturing many features of practical relevance and thus, of making 

the models more comprehensive and realistic. The explicit inclusion of time into a model 

produces some changes in Figure 1. In this case, a better representation for the time line 

is provided by Figure 6.

In this section we discuss in detail this re-designed time line. In particular we focus on 

different aspects related with time-dependent optimization models in the context of Supply 

Chain Planning. Such aspects turn out to be crucial for the uncertainty issues discussed in 

Section 4. 

The current section is organized as follows. In Section 3.1 we discuss different issues that 

if neglected may easily lead to misleading or at least not so realistic models. In Section 3.2 

we discuss several relevant concepts and definitions in terms of multi-period planning mo-

dels. Finally, in Section 3.3 we use an example for illustrating some of those concepts and 

definitions.

3.1 Flaws
When time is not explicitly included in optimization models supporting Supply Chain Plan-

ning we often oversimplify the reality and overlook several important decisions that may be 

relevant in the decision making process.

Figure 6: Division of the time line into multiple 

periods setting the time frame for multi-period 

planning methods.
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3.1.1 “Collapsing” the Future
For many years (e.g., in the 1970s and 1980s) available technology (computational resour-

ces, software, etc) was still much limited. Nonetheless, the scientific community early rea-

lized the relevance of explicitly considering time in optimization models used for supporting 

production/distribution decisions (see, for instance [47]). This called for more complex and 

comprehensive models to be developed and thus more difficult to tackle. This difficulty 

(together with the lack of technology) is possibly the reason why for several decades static 

models were prevalent in the literature.

Nowadays, in the context of Supply Chain Planning, a static model is looked at as an over-

simplification of the reality since it misses many features of practical relevance (see, e.g., 

[43]). When future is collapsed into a single “block” a here-and-now decision is to be made 

and implemented. As a result, relevant changes in the underlying conditions are ignored. 

This may turn a solution too much insensitive to changes in relevant parameters such as 

demand levels or transportation costs, just to mention a few. In other words, a static model 

may completely overlook changes that could be predicted a priori and thus be anticipated. 

In fact, the major purpose for considering time explicitly in an optimization model for Supply 

Chain Planning is exactly that: to better anticipate the future. Even if we are facing a “de-

terministic future” (i.e., the values for underlying parameters and their changes can be ac-

curately predicted for a reasonable amount of time using some forecasting method), this 

often calls for a time-dependent model. 

Finally, it is important to point out that collapsing the future into a single “block” is often 

not feasible namely when it comes to making decisions involving large structures. For in-

stance, the full operational capacity of a large manufacturing plant is often not attained in 

a single step but in different phases over the future (see, e.g., [44] for a deeper discussion). 

In this case, we talk of a progressive phase-in of a facility.

3.1.2 Inability to Adapt
By ignoring time as a dimension to consider explicitly in a planning tool for strategic Supply 

Chain Planning, we are typically led to a single-step phase-in problem. This can be obser-

ved in the literature (see, e.g., [2]) and means that a new system is to be built in a single 

step from scratch or an existing system is to be expanded also in a single step (which can 

be converted – for modeling purposes – into the first case). However, reality may call for 

something totally different. In many situations, companies have a supply chain already 

operating and wish to plan for adapting it to predictable changes in the underlying condi-

tions (or simply to modernize it). This may call, for example, for some structures to be re-

moved (e.g., relocation of a production plant to an area with lower labor costs). Such types 

of decisions can be better accounted for in an optimization model if time is explicitly consi-

dered. Accordingly, in terms of SCND we will find phase-in/phase-out problems in which 

some new facilities are opened throughout time while some others are removed (possibly 

as the result of relocation).

Related with the previous aspect it is worth noticing the decisions associated with capacity 

changes. These cannot be captured by a static model. Due to technological or customer 
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behavior changes, production capacity has often to be adapted. This does not necessarily 

mean installing a new facility or removing an existing one. A trade-off is to consider capa-

city adjustments (expansion, reduction, or transfer). This can be accomplished by the deci-

sion making process only if a time-dependent model is considered. 

Last but not the least, companies often manage their supply chains as part of a larger busi-

ness. Accordingly, budget limitations may easily emerge since shareholders‘ interests have 

to be taken into account (see [48] for a deeper discussion on this issue). Such limitations 

may simply prevent the company from implementing all the decisions in a single step. As a 

result, a time-dependent model may be the only possibility for representing the problem on 

hands. The reader should refer to [2], [43], and [45] for further details.

3.1.3 Length of a Planning Horizon
Nowadays, we can find much literature embedding future in optimization models within the 

context of Supply Chain Planning (see, [2], [5], and [45] as well as the references therein). 

Interestingly, we find no discussion neither about the appropriate length of the planning 

horizon nor about the length of a single time bucket (i.e. the discretization width). Moreover, 

even the concept of planning horizon is not properly discussed in the literature. Most of the 

authors (not to say all) simply assume that some plan should be developed for a time frame 

that they work with as a given input.

In Supply Chain Planning several decisions may last for far more time than the planning 

horizon during which they were made and implemented. Furthermore, in many cases there 

is no “end” planned for some system or structure, which means that in principle, the sys-

tem should be planned for working over an “infinite” planning horizon. Nevertheless, much 

of the work found in the literature assumes models built based upon finite planning hori-

zons; the obvious question emerges: what exactly is an optimal solution for such a model? 

Without a proper answer to this question, the usefulness of many modeling frameworks 

becomes questionable.

In Section 3.2 we give a contribution for the clarification of these aspects.

3.1.4 Errors in the Data
Supply Chain Planning is well-known as a very practical-oriented topic. Many optimization 

models can be found in the literature for solving different problems in the area. In most 

cases, particular emphasis is put on solving models to optimality (see [5] and [45]). What 

is the relevance of doing so? In other words, what exactly is the meaning of an “optimal 

solution” if the model does not properly represent the problem? The issue emerges because 

even if describing exactly the problem on hands, a model must be loaded with data. Such 

data often suffers from errors (e.g., typos or forecasting errors). For instance, Cordeau et al. 

[14] argue that solving a real-life problem to optimality is usually not meaningful due to 

errors contained in the data estimates. Since the error margin tends to be larger than 1%, 

those authors claim that it is adequate to run a mathematical solver until a feasible solution 

within 1% optimality has been identified. We note that this discussion is motivated by a 

static problem – the one investigated in [14]. When we think of a time-dependent model 
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that obviously should be loaded with data associated with a large time frame, then the is-

sue may become even more relevant; easily the 1% error mentioned above increases. 

Accordingly, does it make sense to solve such a model to optimality? Even if the model gi-

ves a perfect description of the problem to be solved (we recall that many models represent 

in fact a simplification of the reality) is the data trustworthy? Is the setting reliable? 

Again, these questions need a proper answer without which the optimization models used 

for supporting decision making can be questioned.

3.1.5 International Facilities
Nowadays, large companies think “globally” when it comes to designing and managing their 

supply chains. Accordingly, modern supply chains often span several countries across the 

globe and thus across different time zones. This makes international operations very hard 

to formulate realistically. This raises some interesting (and difficult to handle) financial issu-

es such as taxes, duties, tariffs, exchange rates, transfer prices, and local content rules (see 

[45] for a literature review and a deeper discussion). 

The relevant aspect for our discussion is that in a global supply chain, we have so-called 

international facilities (a company installs facilities in countries different from the one in 

which the company is registered). The location of international facilities is not a recent issue 

(but not much old either). This is a situation in which a static model may totally overlook 

practical aspects. This fact has been recognized by several authors, who have proposed 

time-dependent models for better capturing the problems‘ features. The reader can refer to 

[11], [12], [30], and [58] for examples of time-dependent models developed with the pur-

pose of giving a better support to decision making when the location of international facili-

ties is to be planned for.

3.2 New Concepts and Definitions
When the parameters underlying a Supply Chain Planning problem are variable and can be 

predicted, we can think of using a deterministic time-dependent model. For instance, if we 

have predictable but variable demand, it makes sense to embed this information into a 

time-dependent model.

3.2.1 Planning Horizon
When time is to be explicitly embedded in an optimization model within the context of 

Supply Chain Planning, a first aspect to look at is the so-called planning horizon; but then, 

the question arises: what exactly is the planning horizon? 

We first note that a plan devised for some time frame does not necessarily mean that at the 

end everything is “shutdown” and the system comes to an end. This is particularly true in 

Supply Chain Planning where the planning horizon may simply be an indication of how far 

into the future a decision maker can go in terms of collecting meaningful information.

In a time-dependent supply chain optimization model, the planning horizon can be defined 

as the time frame corresponding either to the available data (meaningful/trustworthy infor-

mation) or to the time span defined by a decision maker for having the system fully opera-
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tional and/or appropriately adapted to the circumstances.

The previous definition makes it clear that a planning horizon may simply result from a time 

frame previously defined by a decision maker for implementing a new system or adjusting 

an existing one. 

A planning horizon is a fundamental element in a time-dependent model. Therefore, by 

using such type of model, we can avoid collapsing the future into a single block. In this 

case, the focus changes from “what should be done” (static setting) to “what should be 

done and when” (time-dependent setting).

From a practical point of view, a time-dependent model can be of great relevance since it 

allows embedding other decisions, such as those related with (i) inventory management, (ii) 

progressive phase-out of existing facilities, (iii) progressive phase-in of new facilities, (iv) 

adjustment of the operating capacities (which, from a cost point of view may be preferable 

to opening new facilities).

Even if the underlying parameters (e.g., consumer preferences, demand levels, transporta-

tion costs, etc) do not induce a time-dependent model, some other conditions may do so. 

Above we have already mentioned the possibility of having to deal with an exogenous bud-

get constraint, which may impose the development of a time-dependent plan for building/

adjusting a system.

In any case, we can now think of extending the look-ahead considered in the previous sec-

tion in order to analyze what should be done if we want to plan for the medium and/or long 

term.

In the context of Supply Chain Planning, researchers have mostly considered finite planning 

horizons. Nevertheless, as it was already observed, many decisions are made to last for a 

time that may go much beyond the end of a planning horizon. Accordingly, it seems reaso-

nable to consider the possibility of planning for an “infinite” planning horizon. In the context 

of production/distribution systems, we can divide the existing literature dealing with infinite 

planning horizons into two main branches: (i) works that look for a static/finite-horizon so-

lution that is “the best” for an infinitely long planning horizon; some papers in this direction 

include [13] and [16]. (ii) Works in which the system is looked at as a Markov Chain (if 

possible) and then a Markov Decision Process is considered; some works in this direction 

include [62] and [64].

In most cases, however, researchers have assumed a finite planning horizon (see the recent 

review paper [5]).

3.2.2 Discrete- versus Continuous-Time Models
When working with a time-dependent model we can distinguish between continuous- and 

discrete-time models. In the first case, there are no specific moments for implementing the 

decisions; the best moment for performing changes in the system is itself a decision to 

make. Some works exploring this feature and that include decisions often found in strategic 

Supply Chain Planning (e.g., location of facilities) are [19], [49], [51], and [63].

A large majority of the literature assumes a discrete-time model, i.e., it is assumed that the 

planning horizon is divided into several time periods. It is possible to enumerate a few rea-
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sons justifying the use of such a type of model.

1.	The models are easier to handle. Typically, decision variables can be associated with 

the different periods of the planning horizon and thus, a mixed-integer mathematical 

programming model can often be derived.

2.	When one looks more into the future, we possibly see “more uncertainty” that changes 

in a discrete way.

3.	Depending on the information we have, the length of a time period can be easily adjus-

ted: if we have more information we can consider a daily planning; otherwise we can 

go into a monthly or yearly planning, for instance.

4.	The organization of the data makes multi-period models more natural. For instance, we 

often find or look for daily, weekly or monthly demand levels. This is also connected to 

a large extend with forecasting systems that typically work with time periods no matter 

their length.

5.	In nowadays planning systems, multi-period is the minimum time consideration that is 

possible.

When considering a discrete-time model for a Supply Chain Planning problem we simply 

partition the relevant time frame into several “slices” – time periods as illustrated in Figure 

6. The time periods do not have to be of the same length; it is the available data and the 

goals set by the decision makers that will define them. Somehow, what we are considering 

is the possibility of taking into account the look-ahead (short-term uncertainty) discussed in 

the previous section and “enlarge” the future time frame to be embedded into the model.

3.2.3 The Value of the Multi-Period Solution
When we consider a multi-period optimization model, we are considering one extra dimen-

sion in the problem – time. The corresponding optimization models tend to become much 

larger than the static ones. A relevant question is whether it is worth considering such a 

larger model (and thus possibly more difficult to tackle). In other words, is it not possible 

that a solution obtained using an appropriate static model represents a good approximation 

to the multi-period problem? A first answer to this question was given by [3] in the context 

of a reverse logistics network design problem. Later, this aspect was formalized by [47] in 

the general context of multi-period facility location problems.

A central concept for evaluating the relevance of considering a multi-period model is that of 

a static counterpart problem. It can be defined as a problem that takes into account the 

information available for the entire planning horizon and looks for a static (time-invariant) 

solution that holds for every period. 

This concept is very easy to capture within the context of SCND. In that case, decisions 

have to be made regarding the network structure; these are typically strategic decisions that 

once made will influence the more tactical and operational decisions (e.g., shipment of 

commodities through the network). In a multi-period SCND problem, several parameters 

such as transportation costs and demand levels are assumed to change over time. A static 

counterpart is a problem obtained from the original one that allow us to define a network 
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design that can be implemented at the beginning of the first period and remains unchanged 

until the end of the planning horizon. 

One possibility for building a static counterpart is to somehow aggregate the information 

available for all periods. For instance, suppose that we are dealing with time varying de-

mands. If facilities (e.g., manufacturing plants, central distribution centers) are uncapacita-

ted, then several possibilities emerge for aggregating that information: (i) the demands can 

be averaged over the planning horizon, or ii) a reference value can be determined (e.g., the 

maximum value observed throughout the planning horizon). If additional constraints exist 

(e.g., capacity constraints), then choosing a reference value may render the resulting static 

solution infeasible in some periods. In this case, one possibility for building a static coun-

terpart is to define the (time-invariant) demand of each customer according to the maxi-

mum value observed across all periods. In any case, the adequate aggregation of multi-

period data is very much problem-dependent.

Once a static counterpart is defined, we can finally evaluate the relevance of using a multi-

period modeling framework. We define the value of the multi-period solution as the arith-

metic difference between two other values: (i) the (multi-period) value of the optimal solu-

tion to a static counterpart (when that solution is feasible for the multi-period problem), and 

(ii) the optimal value of the original multi-period problem.

When the value of a multi-period solution is obtained by aggregating the data for all periods 

it is referred to as a weak value of the multi-period solution (see [3] and [47]). On the other 

hand, a strong value of the multi-period solution is obtained if no aggregation is performed 

in the data. This is a possibility in some cases, namely when we can add a set of cons-

traints to the multi-period problem stating that some or all decisions are to be the same in 

all periods of the planning horizon (the reader should refer to [47] for further details and for 

an example).

3.2.4 Recourse Model
Interestingly, many multi-period models in the context of Supply Chain Planning can be 

used in later periods exactly as in the beginning, as far the decisions already implemented 

are fixed. This aspect is emphasized by [4] and [3].

 In such a case, the model is used to plan for the “remaining” future but the decisions to be 

made now take into account what has already been implemented. We get a model that 

somehow “corrects” bad (or not so good) decisions previously made. This concept is forma-

lized as follows: in a time-dependent supply chain optimization model, a recourse model is 

the model we obtain from the original one when in some future time period we fix the de-

cisions already made (and implemented) thus giving the possibility to determine a plan for 

the remaining future.

The reader should refer to [4] for further details and examples. The periods whose decisions 

are fixed in the recourse model are referred to in [31] as frozen periods.

3.3 Examples and Results
The use of discrete-time optimization models in the context of Supply Chain Planning is not 
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new (the reader can refer to [45] as well as to the references therein). In this section we 

refer to a more recent application namely, the case study inspired by a real-life problem in 

Germany that arises in the context of reverse logistics network design for washing machi-

nes and tumble dryers (see [3] for all the details).

In that study, the authors assume that washing machines and tumble dryers are to be 

collected from 40 collection centers located by the municipalities in the 40 most populated 

cities within Germany. Initially, a 5-year planning horizon was considered. The multi-period 

model proposed by the authors was loaded with real data (when available). In order to 

evaluate the sensitivity of the results to variations in the data, the authors built 18 instances 

that differ in set-up costs and capacities. This is due to the lack of real data associated with 

those parameters.

In this section we summarize the analysis performed in [3] concerning both the length of 

the planning horizon and the value of the multi-period solution.

After developing an appropriate static counterpart the authors of [3] evaluated the value of 

the multi-period solution for each of the 18 instances considered. The results are replicated 

in Figure 7, where we observe that the percentage difference between the optimal solution 

to the multi-period problem and the multi-period solution derived from a static model can 

be up to approximately 11% of the optimal cost. If we are talking about millions of euros 

(as it is the case) then we immediately realize that by considering a multi-period modeling 

framework, a significant saving can be achieved.

The case study we are mentioning is also a good example that the extra dimension induced 

by time can still lead to models tractable by a general purpose solver. This is particular 

relevant for practitioners who often do not master advanced methodological skills for inte-

ger and combinatorial optimization problems but can easily use a commercial solver for 

solving a model.

To the best of the authors‘ knowledge, [3] were the first work to explicitly evaluate the 

Figure 7: The value of the multi-period solution 

illustrated (case study investigated in [3]).
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impact associated with the length of the planning horizon and find its appropriate size for 

modeling purposes. The authors considered what they called a base instance (the instance 

from which all the other instances were generated by varying some parameters) and for that 

instance they considered planning horizons ranging from 1 to 7 years. The authors conclu-

ded that the additional computational effort of using a 5-year model instead of a single-

period model is negligible (although in the latter case a more comprehensive and realistic 

model is considered and a clear financial benefit is achieved as we observed above). The 

extra computational effort required by an off-the-shelf solver for planning horizons with a 

larger number of periods can be significant. In Figure 8 we depict the corresponding CPU 

time obtained in [3].This Figure shows that a trade-off may have to be considered between 

the comprehensiveness of a multi-period model and the effort necessary to solve it.

Furthermore, [3] emphasize that given the amount of assumptions that may have to be 

taken regarding the problem data, the computational effort associated with the multi-period 

model may be reduced by allowing a gap in solving the problem instance. This stays in line 

with the discussion about errors in the data presented in Section 3.1.

4 Risk-aware Supply Chain Planning
In the previous section we have seen that multi-period models play a major role in Supply 

Chain Planning. However, a model capturing a medium or long planning horizon has some 

inherent uncertainty which has to be considered adequately.

Usually decision makers are aware of the uncertain development of some information requi-

red for making decisions. For example expectations about customer demand deviate in 

most cases from the initial outlook. Means for predicting uncertain information may include 

historic data or expert knowledge. Nowadays, proprietary planning tools still restrict uncer-

tainty to demand fluctuations and encapsulate volatilities in demand forecasts [45]. 

Figure 8: Length of the planning hori-

zon – CPU time (case study investiga-

ted in [3].
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Over the last decades supply chains evolved into highly complex, internationally-acting 

systems and are since then caught in a crossfire of additional environmental influences. 

This evolution led to an increase of uncertain information and to a broadened range of 

uncertainty. In particular, incidences that lead to sudden and unexpected modifications at 

different locations within the supply chain attracted the attention of decision makers. Na-

tural disasters such as earthquakes destroy production facilities or roads, and forestall the 

possibility to satisfy customer needs as promised. Besides these so-called disruptions, 

unpredictable and slightly aggravating deviations also affect a supply chain‘s goals achieve-

ment. Exchange rate fluctuations, variability of oil prices, or increased labor costs have the 

potential to reduce the profit margin and hence the competitive advantage of supply chain 

partners. Thus, unexpected deviations and disruptions – subsumed under the notion of 

supply chain risk – impede the availability of resources, the realization of the devised plans, 

the satisfaction of customer demand, and consequently the achievement of global supply 

chain objectives. Taking these aspects into account, the time line that has been used 

through this paper can now be refined according to Figure 9.

The perils that have the potential to derogate the supply chain are accounted under the 

research topic known as supply chain risk management [61, 65]. Over the last decade 

there has been a growing interest concerning the inclusion of risk aspects in supply chain 

optimization models. This development has led to the adoption of risk concepts, termino-

logies and methods that have been defined and applied in a broad variety of related re-

search fields and methodologies. However, for the purpose of supply chain risk manage-

ment the suitability of risk, as it is coined in these domains, is up for discussion, see [32]. 

In this section we highlight the importance of time aspects underlying uncertain develop-

ments. Additionally, we discuss their effects on the extent of supply chain risk. We follow 

the same structure already used in Sections 2 and 3. Therefore, we start by presenting and 

discussing common flaws in terms of supply chain risk perception and how they aggravate 

a reliable supply chain risk assessment. Next, we present new concepts related with time-

dependent risk consideration. Finally, we provide some logistical insights.

Figure 9: Division of the time line under additional 

consideration of risk and uncertainty measures.
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4.1 Flaws
Most of today‘s supply chain risk definitions start from the assumption that events are the 

decisive factor determining risk [61]. Supply chain risk evaluation and assessment, therefo-

re, focus on an event-by-event analysis and assume that the consequences of an initial 

triggering event can be uniquely determined. However we believe that this event-focused 

perception, definition and assessment of supply chain risk is flawed since it leads to misin-

terpretation and oversimplification. Next, we briefly embrace the essence of this definitional 

fiat and then we focus on flaws driven by ignoring time as a relevant dimension in the plan-

ning process. 

Global supply chains are exposed to many potential threats. Hardly is it possible to consider 

and manage each and every risk. Accordingly, supply chain managers apply heuristics 

thinking and try to focus on managing the “most important” risks. In order to determine 

what actually is “most important”, the product of probability of an event and the related 

severity is commonly accepted and used as risk measure. For illustrative purposes consider 

the example of a meteor strike. Since the risk of a meteor striking the Earth affects not only 

specific communities or countries, but imposes a threat for the entire mankind, its assess-

ment is a very sensitive topic. Only recently it is possible to accurately detect the frequency 

of such strikes. A dependable statistic is therefore missing. Accordingly, a probability esti-

mation for meteor strikes is especially difficult to obtain. Additionally, an estimation of the 

impact of such an event is quite hard because the magnitude of severity is strongly related 

to the geographic point of impact. On February 15th 2013, for example, an asteroid entered 

Earth‘s atmosphere over Russia and exploded above the city of Chelyabinsk. The impact 

was considerably low when compared to the potential results had this meteor not exploded 

miles over the surface but hit a major city like London, New York or Paris. Hence, the risk 

of a meteor strike depends not only on probability and severity, but also on numerous as-

pects that are not considered, respected or even modeled so far. One of these essential 

characteristics is time. For instance, the point in time a meteor enters the atmosphere has 

an influence on the geographic point of its impact and consequently on the severity of the 

event. In the particular case of supply chain risk, time – having influence on the “degree” of 

uncertainty – is often ignored or neglected. We denote this biased practice as the time trap 

of supply chain risk.

Next, we focus on describing different settings that uncover the lack of considering distinct 

aspects related with time. Note that while we discuss these flaws, we claim that their com-

mon and ultimate source is the oversimplified but still prevailing definition of supply chain risk.

4.1.1 Ignorance of Dynamics
As it was emphasized in Section 3, most existing approaches for Supply Chain Planning are 

based on a problem environment, where certain parameters are treated as constant over all 

time. In those cases, it is assumed that supply chain structures (including resource alloca-

tion) are established and remain constant over years. However, product portfolio, produc-

tion technology as well as international price politics change over time together with other 

parameters such as transportation costs, supplier reliability, and lead time. The dynamics 
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of uncertainty associated with the evolution of supply chain parameters is usually neglec-

ted – especially when it comes to the assessment of supply chain risk. Following the pre-

valent supply chain risk understanding, the extent of a risk is calculated by the product of 

probability of an occurring event and the severity of its consequences. As the “degree” of 

uncertainty associated with a situation and its evolution may evolve over time (new infor-

mation becomes available), the probabilities associated with some risk may change, as 

well. This can lead to misjudgments of risk relevance or even to its ignorance: if the proba-

bility of a highly ranked risk decreases over time, the risk becomes less prominent and 

should have been rejected from the priority list. If the probability of a low-ranked risk incre-

ases, the risk becomes more relevant and it would have been better to have considered this 

risk in the priority list. Instead, initial risk assessment is considered to be valid for the enti-

re time horizon of the decision level. 

What is clear when we look into risk assessment considered nowadays is that the incorpo-

ration of the dynamics of uncertainty evolution is simply ignored.

4.1.2 Neglect of Preparation Time
The complexity of modern supply chains together with the uncertain evolution of important 

parameters and the unknown propagation of disruptions through the networks make the 

management of supply chain risks awkward. Accordingly, most decision makers accept the 

recurrent appearance of disruptions and come together in a so-called war-rooms right after 

a disruption occurs. This approach has the potential of yielding far worse consequences 

namely if relevant events are not considered appropriately. This does not happen necessa-

rily because either an event is in itself unlikely or it is not possible to anticipate it (and thus 

prepare the system for the consequences); rather the relevance of such events may simply 

be neglected either explicitly or implicitly, such as in case of unprecedented events that 

have not been identified yet. Most supply chain disruptions are declared to have an earth-

quake momentum: they appear suddenly without any warning. However, there are many 

events, such as labor strikes, price changes, and even natural catastrophes evolving over 

time, which provide early warnings and which can be anticipated prior to their occurrence. 

The volcanic ash cloud that affected Europe in April 2010 (that is estimated to have caused 

losses of US $4.7 billion in global GDP [50]) is an example of unused preparation time. 

Although this event has been frequently called unprecedented and unexpected [41, 52], it 

was neither. Volcanic activities in Iceland comparable to the 2010 eruption occur on ave-

rage every 20 to 40 years [53]. This volcanic activity only becomes a problem for air traffic 

in Europe when it coincides with rare north to north-westerly wind movements [38]. While 

the ash cloud can be considered unusual, it was far from unprecedented and unexpected: 

the volcano had been in eruption for four weeks before the ash cloud reached the airspace 

of the United Kingdom on April the 15th, which was more than enough time for launching 

contingency plans – had these existed.1 

A conclusion is clear from the above discussion: the extent of supply chain risk can increa-

se significantly by neglecting the preparation time available prior to the occurrence of a 

disruption.
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4.1.3 Non-Sub-Additivity of Supply Chain Risk over Time
Financial risks are quantified by the evaluation of risk measures. Financial risk measures 

must satisfy certain axioms, including sub-additivity, which refers to the diversification po-

tential of several portfolios compared to a single one. Mathematically, a sub-additive func-

tion is a function for the sum of two elements that returns something less than or equal to 

the sum of the function‘s values at each element.2 Especially when considering the duration 

of unexpected changes the sub-additivity axiom does not hold for evaluating supply chain 

risk. An example is the West Coast Port lockout: after weeks of negotiations between the 

international long-shore and warehouse union on one side and the pacific maritime associ-

ation on the other, workers of all ports of the US West Coast went on strike for 10 days. 

The incident was not totally unexpected, and led New United Motor Manufacturing Incor-

porated (NUMMI) to increase stock levels. Increased inventories, however, can overcome 

supply shortages only for a limited time. The duration of the labor strike was too long for 

the inventory to compensate late goods. For this reason, NUMMI installed an additional 

supply channel via air freight. 

The duration of relevant changes has tremendous influence on the extent of supply chain 

risk. Thus, supply chain risk metrics need to reflect the effect of time aspects, such as the 

duration of unexpected changes. From the above it is obvious that a good supply chain risk 

function cannot be separable in time, since this would very likely lead to a violation of the 

sub-additivity axiom. Another indicator for the importance of time in supply chain risk.

4.1.4 Biases of Mitigation Planning
The aforementioned time aspects, whose ignorance result in time traps of supply chain risk, 

usually need to be respected while designing and planning supply chains. However, mode-

ling and assessment of supply chain risk are oversimplified, as it is the planning of proper 

mitigation measures. Decision models for Supply Chain Planning problems consider risk at 

distinct planning levels. Traditionally, strategic supply chain decisions are the first ones to 

be made. Afterwards, they are used as an input for consecutive, e.g. tactical and operatio-

nal decision levels. Often, decision makers argue that risks yielding to huge performance 

deteriorations should be handled on a strategic level whereas medium and small risks 

should be accounted for at tactical and operational decision levels, respectively. Due to the 

nature of most supply chain risks (including the type of uncertainty and its future develop-

1  A phenomena closely related to the neglect of available preparation time is formulated 

within the Black Swan Theory [59]. It defines an event to be a Black Swan, when it is 

unexpected, has major impact and is rationalized in hindsight. The latter means that 

the information and data available before the event are re-interpreted in the light of the 

new insights. A Black Swan, therefore, is an event that could have been anticipated.
2  f(x+y) ≤ f(x) + f(y)
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ment), it might be necessary to break this decision process. Consider as an example a 

Swiss chemical producer trying to limit the loss evoked by a breakdown of its production 

process [40]. Typically, companies strive to limit the loss they might encounter by closing 

insurance contracts. However, in the case of the above mentioned Swiss company, the 

major re-insurer refused to insure the production breakdown since the replacement time of 

the batch reactor was estimated to be over one year (the reader should refer to [40] for 

further details). The producer had to identify another mitigation alternative in order to be 

prepared for disrupted production: the company established an agreement with a major 

competitor to share production capacity in case of a production breakdown. The mitigation 

for the huge disruption of reactor destruction was handled via strategic contract negotiation. 

In contrast to increased safety stock (which is effective over the whole planning horizon), 

the aforementioned measure becomes effective on an operational level (right after a disrup-

tion occurs). Contrary, increased inventory levels supported some of the major European 

automotive manufacturers when supply shortages occurred during the (short-term) events 

that surrounded the European ash cloud. 

The belief that distinct types of supply chain risks can be assigned to different planning 

levels is naïve – especially since decision makers do not know how the disruption‘s severity 

may evolve over time. In order to offer reliable mitigation options or even robust and flexib-

le supply chain designs and plans, it is necessary to overcome the time traps of supply 

chain risk described above. In the next section we introduce important concepts and defi-

nitions that facilitate the modeling of relevant time aspects.

4.2 New Concepts and Definitions
The exclusive probabilistic and event-related understanding of supply chain risk leads to an 

incomplete and insufficient perception of risk and impedes its appropriate and effective 

management. Next, we present some key elements and concepts that are needed to under-

stand the dynamics of supply chain risk and to design appropriate risk-aware decision 

models. For further reading we refer to [31].

4.2.1 Causalities
The biases discussed in the previous paragraphs are based on an analysis of supply chain 

risk that focuses on the simplified evaluation of the disruptive trigger and the performance 

deterioration.

Nevertheless, triggering events can yield different outcomes as well as distinct performance 

deteriorations may result from different events. Accordingly, a triggering event can be assu-

med only as the “root” cause of performance deterioration. In fact, a single event or a se-

quence of consecutive events only becomes an issue when they negatively affect one or 

several supply chain processes and when their consequences propagate through the entire 

supply network – see Figure 10. 

We define a supply chain process as an individual activity involved in procuring, producing, 

storing, and distributing goods as well as services for the sake of goal achievement of the 

underlying supply chain. Supply chain processes can result from different types of opera-
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tions like transportation, production, manufacturing, storage, handling, shipment, enginee-

ring design functions, or even legal processing [34]. Once an event occurs it is irrelevant 

whether it has arisen internally or externally to the supply chain. It is the interplay of all 

supply chain processes and their actual states of supply chain characteristics that determi-

nes if a supply chain is able to absorb modifications. This interaction determines whether 

the first impact of an initial event on the supply chain provokes the inefficiency or/and inef-

fectiveness of consecutive processes, propagates through the entire network and finally 

results in a performance deterioration – see Figure 10. 

We define a potential trigger as an event that has the potential to negatively affect the ef-

ficiency and effectiveness of a supply chain process, which may result in a performance 

deterioration. 

The eruption of the Icelandic volcano is considered to have evoked a perfect storm of con-

sequences such as ash cloud, aircraft grounding, lead time increase, delays, halt of produc-

tion and delayed customer orders. European supply chains were only hit by air transporta-

tion starting or ending in Europe. Nevertheless, for some of them, the increase in the lead 

time of air-shipped goods was large enough to result in supply chain disruptions.

A potential trigger is called a disruptive trigger when its occurrence results in the deterio-

ration of supply chain performance. 

A potential trigger along with a vulnerable supply chain (i.e., a supply chain that is not able 

to handle modifications in its characteristics) uncover the existence of one or several supply 

chain risks. However, inefficiency or ineffectiveness can be evoked by any known or unk-

nown disruptive trigger. Instead of starting risk analysis by the identification, gathering and 

assessment of potential events that may serve as a disruptive trigger, we consider that the 

Figure 10: Event e triggers malfunction of a sup-

ply chain process, which propagates through the 

entire network and affects supply chain‘s perfor-

mance, SCP, in terms of functionality and/or ef-

ficiency.
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main task of supply chain risk analysis is to evaluate the potential effect of modifications of 

supply chain characteristics and assess their influence on key performance indicators.

4.2.2 Uncertainty Profile
The occurrence of triggering events may affect the actual status of supply chain processes. 

The status of a process is determined by attributes that further describe its use and capa-

city. The effectiveness and efficiency of supply chain processes such as transportation, 

production, storage, handling, or shipment can for example be characterized by attributes 

like costs, capacity and time. In what follows we denote these attributes of supply chain 

processes as supply chain factors.

We define a supply chain factor SCP as the quantitative description of a specific attribute of 

a certain supply chain process. 

Production capacity, transportation lead time, customer demand, or detailed inventory le-

vels for finished goods at some distribution center are all examples of supply chain factors. 

In order to evaluate the potential effects of supply chain factor modifications, it is necessa-

ry to anticipate how their values may develop over time. A deviation may lead to specific 

supply chain risks when it takes positive (e.g., lead times, prices) or negative values (e.g., 

capacities). Considering a single potential trigger, the development of a supply chain factor 

over time can be described by temporal and quantitative aspects. Important aspects are: 

time interval between two distinct deviations, duration of a deviation (includes duration of 

peak-moment and time for the deviation decay), speed to maximum deviation and speed to 

full recovery, point in time of information availability or deviation detection (this may coinci-

de with the start of change, lie before or after the beginning of changing factors), time to 

respond, magnitude of deviations over all affected time periods.

Note that the relation between time and performance deterioration as introduced in [54, 

55] and discussed by several further authors (e.g., [6, 9, 15, 41, 42, 56]) is referred to as 

a disruption profile. In this paragraph, we highlighted the uncertainty development referring 

to the relation between time and value deviation of supply chain factors. Depending on the 

type of supply chain factors, uncertainty profiles look different and can be described by 

statistical moments like expected value, variance, skewness, and kurtosis.

4.2.3 Performance Deterioration
There is a vast amount of literature available that discusses both the importance of perfor-

mance measurement (cf. [1, 8, 39]) and the difficulty of choosing the “right” measures (cf. 

[24, 37]). Due to the complexity of globally operating supply chains, the variety of activities 

within a supply chain system as well as the subjective assessment of goal achievement of 

supply chain partners, the choice of supply chain performance measures is a critical task 

([25]). 

Having identified the performance measures that best reflect and assess supply chain stra-

tegy and the related objectives with respect to efficiency and effectiveness, it becomes 

necessary to determine the target level for these performance measures as well as the ac-

ceptable degree of level deterioration. Quite often managers know what they can bear. A 
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service-level reduction of 2% might be acceptable, while an increase of overall logistics 

costs by 50% may simply be unacceptable. A potential supply chain performance deteri-

oration, SCPD, is defined as the difference between the planned or targeted supply chain 

performance value, SCPP, and the actual performance value, SCPA. A performance deterio-

ration becomes CRITICAL, cSCPD , if it exceeds the acceptable value of performance deteri-

oration SCPD, is defined as the difference between the planned or targeted supply chain 

performance value, SCPP, and the actual performance value, SCPA. A performance deterio-

ration becomes CRITICAL, cSCPD, if it exceeds the acceptable value of performance deteri-

oration aSCPD. The evaluation of the performance deterioration is a subjective concept and 

depends on the preferences of the decision maker [27]. The importance of a (potential) loss 

depends on both organizational and individual goals and constraints. Some decision makers 

accept only small deviations from the planned supply chain performance while others allow 

higher changes.

4.3 Examples
After having set the basis for a new and time-dependent supply chain risk perception, we 

give strength to our definitions through examples.

Consider the case of a labor strike that negatively affects the lead time between a core 

supplier and the major production site. At the beginning the strike leads only to minor but 

recurrent lead time increases, because emergency supplies are still delivered. After a few 

days, however, the staff of the major supplier carrier starts a general strike that results in a 

large lead time increase. By means of temporal and quantitative concepts introduced above 

the uncertainty profile of the supply chain factors involved can be modeled. 

Figure 11 highlights an exemplary development of such a factor modification. Additionally, 

this figure shows how the factor change affects the supply chain performance, which can 

be described for example through the overall service level. The effect of a factor change 

becomes visible when the planned or targeted supply chain performance cannot be met. 

The deviation of the target performance level only becomes critical if the acceptable level 

of performance is deteriorated. 

As it can be observed in Figure 11, if a supply chain ships only small amounts by the trans-

portation link associated to the lead time fluctuations or is endowed with sufficient back-up 

inventory units, overall supply chain performance might not be affected. The potential loss 

is acceptable, which refers to the non-existence of supply chain risk. This is reflected by the 

fact that the first minor to moderate changes can be handled or compensated by the supply 

chain. If the transportation link is, however, used more frequently, back-up inventory units 

are too few or used up too early, and thus performance deterioration grows up continuous-

ly over time. This development could take place slightly or with up-and-down movements. 

Within the figure this situation is reflected after the third lead time increase, when the 

supply chain cannot adhere to the acceptable level of performance deterioration. The asso-

ciated loss is not acceptable and uncovers the existence of supply chain risk. 

Due to the limits of explanatory power provided by the supply chain risk definition and the 

methodology deduced from this definition, numerous biases arise. The assessment of risk 
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as the product of event-related probability by impact may lead not only to faulty identifica-

tions, but also to deficient conclusions. Statements about the future are difficult and have 

to be handled carefully. Besides prospective developments, it is the understanding of how 

changes affect the supply chain that need to be thoroughly evaluated. For many years it has 

been difficult to get access to a sufficient amount of information necessary to describe 

supply chain complexity and interactions. Nowadays, due to technical innovations, data 

acquisition and preparation are more easy. What is still missing is the understanding of the 

supply chain dynamics that cause the existence of supply chain risk. The missing conside-

ration of relevant interactions forestalls the possibility to understand, model and analyze all 

potential disruptive triggers, all available countermeasures, and their interaction with 

enough detail. Having understood the dynamics that affect the goal attainment of underly-

ing supply chains, the formulation and solution of optimization models should resume the 

determination of risk-aware supply chain designs and plans. Commonly used countermea-

sures such as additional suppliers, safety stocks, and capacity fall back positions would still 

be used but should be determined by the mathematical model formulation.

5 Discussion and Conclusion
When we review the findings analyzed in Sections 2 – 4, we observe two central aspects: 

time and uncertainty. Each of those sections was built around the need for handling at least 

Figure 11: Exemplary uncertainty profi-

les of supply chain factor values and 

related level of supply chain perfor-

mance.
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one of these aspects. As a result, we were led to different classes of models depending on 

the features captured. In particular, we observed that the time line from the introductory 

section was too simplistic and had to be refined or adapted progressively according to the 

circumstances analyzed. Furthermore, uncertainty is often present in the re-designed time 

lines. Finally, it is clear that the contents of Sections 2 – 4 are deeply interrelated.

In our opinion, a good synthesis of the discussion provided by this paper is depicted in Fi-

gure 12. The central aspects (inner to the triangle) are time and uncertainty. Then, we ob-

serve online models with look-ahead when capturing short-term uncertainty is the goal. In 

this case, time is not the main driving aspect and thus we locate “models for online prob-

lems with look-ahead” in the lower-left corner of the triangle. Nevertheless, we observe a 

common edge between online models with look-ahead and multi-period models. This ma-

kes clear the fact that when considering online models we are already capturing time (fu-

ture) although in the short term. In this situation we have to be aware that we are talking 

about a “deterministic” future (the look-ahead). It is crucial for planners to be able to deter-

mine which look-ahead is still feasible. On the other hand, when time is the driving aspect 

we need to consider time-dependent models: we move up and right in the triangle. All the 

ingredients are gathered by risk-aware models. In this case, we look far into the future and 

thus we have to deal with stochasticity in an explict way. A big challenge is to bring such 

models into Advanced Planning Systems (which is obviously needed). In Figure 12 the risk-

Figure 12: Interaction between the different ty-

pes of models discussed and the main “future” 

components.
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aware models are represented in the right corner of the triangle and have a common link 

with multi-period models (the multi-period setting) and also with online models (uncertain-

ty as a key driving aspect).

In this paper we discussed the relevance of time and uncertainty in the context of Supply 

Chain Planning. We observed that depending on the driving aspect we should consider a 

different type of model. We identified several flaws in the existing knowledge or, in other 

words, we enumerated some issues that have not been appropriately accounted for so far. 

In particular, we discussed new approaches to Supply Chain Planning. We looked into the 

impact of recent technological developments like the Internet of Things or Industry 4.0 on 

supply chains, and we showed how online optimization models can help coping with real-

time challenges. Finally, we re-coined the concept of risk in the realm of Supply Chain Pl-

anning and we answered to the questions of how to measure supply chain specific risks and 

how to incorporate them into mathematical models.

We strongly believe that the findings of this paper will lead to interesting new OR models, 

both for academic research and for integrating realistic planning tools suitable for practitio-

ners.
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