ThinKIsense
Ressourceneffiziente Thin-Edge-Systeme durch integrierte KI und neuromorphe Elektronik in Sensoren
Start: 01.2021
Ende: 12.2021
Elektronische Augen und Künstliche Intelligenz (KI) ermöglichen bereits heute automatische Türwächter und Wohnräume, die über das Wohl ihrer Bewohner*innen wachen. Dabei kann die Privatsphäre der Menschen gewahrt werden, indem die Videodaten direkt im Sensor verarbeitet werden (sogenannte „eingebettete KI“). Vor allem komplexe Anwendungen mit konventioneller KI haben jedoch einen Bedarf an Rechenleistung, der in eingebetteten Hardware-Lösungen einen zu hohen Stromverbrauch, Probleme mit der Abwärme und hohe Herstellungskosten verursacht. Eine Echtzeitverarbeitung in Anwendungen zur Erkennung von Aktivitäten mit zeitlichem Kontext ist daher in vielen Fällen mit eingebetteter KI nicht möglich.
Als Anwendung wird ein System betrachtet, welches kritische Situationen wie etwa Bewegungslosigkeit, Inaktivität und Stürze in Wohnräumen erkennt und im Notfall mit einer Alarmnachricht an Pflegekräfte oder Angehörige reagieren kann. Der Projektpartner Inferics bietet hierfür mit PatronuSens aktuell eine Lösung basierend auf klassischen Kameras an. Im Projekt sollen als Lösungsansatz anstatt klassischer Kameras sogenannte Event-basierte Kameras verwendet werden, welche nur Änderungen über die Zeit als kontinuierlichen Datenstrom ausgeben. Durch dieses Funktionsprinzip entsteht eine inhärente Filterung des beobachteten Bereichs, wobei “Uninteressantes” ignoriert wird und nur Bildbereiche mit Aktivität ausgegeben werden. Abseits des Umstands, dass solche Event-Kameras alleine schon weniger Energie benötigen als ihre klassischen Gegenstücke, wird durch diese Filterung auch die Menge an Daten reduziert, die ein nachfolgender KI-Algorithmus verarbeiten muss. Das Ziel dieses Vorhabens ist es, zu untersuchen, wie solche Event-basierten Kameras in ein bestehendes Bildverarbeitungssystem integriert werden können, welche Systemkomponenten hierfür angepasst werden müssen und welche Vorteile ihr Einsatz tatsächlich bringt.
Das FZI forscht im Rahmen des Projekts insbesondere an gepulsten neuronalen Netzen (eng. Spiking Neural Networks, SNN) und deren Einsatz in realen Anwendungsszenarien. Zu diesem Zweck werden aktuelle Fortschritte in Neuromorphic Computing untersucht, die derzeit verfügbaren eventbasierten Kameras evaluiert und neuromorphe KI-Algorithmen entwickelt.
In diesem Forschungsschwerpunkt liegt das Hauptaugenmerk für das FZI auf den Themen Künstlicher Intelligenz (KI) und Mensch und KI-Engineering. Zudem beschäftigt sich das FZI mit Fragestellungen zu dedizierter Hardware für KI sowie KI zur Prädiktion.
Förderhinweis:
Das Projekt EmbeddedNeuroVision wird vom Ministerium für Wirtschaft, Arbeit und Tourismus gefördert.
Projektpartner:
Ressourceneffiziente Thin-Edge-Systeme durch integrierte KI und neuromorphe Elektronik in Sensoren
Die Herausforderungen durch den Klimawandel aktiv angehen und als Chance für die deutsche Wirtschaft nutzen.
Zwischen Autonomie und Überwachung – Arbeitnehmer*innen-orientierter Einsatz von People Analytics in Präsenz- und Fernarbeit
Multifunktionaler Serviceroboter zur Unterstützung professioneller Pflege in Krankenhäusern
Mehr Sicherheit durch kontinuierliches Monitoring von Sicherheitsvorfällen autonom agierender Fahrzeuge
Dynamisches Demand-Response-System für eine nachhaltige Fertigung durch informationstechnische Vernetzung zur effizienten Energienutzung, -vermarktung und -erzeugung
Das House of Participation stellt die digitalen Bürger*innenbeteiligung in den Mittelpunkt.
Logistikkonzept sowie IKT-Plattform für einen zukünftigen Gütertransport in Straßenbahn- und Stadtbahnwagen
Smarte Energieversorgung im Karlsruher Osten: Ein Leuchtturmprojekt der TechnologieRegion Karlsruhe
Verfahren der Künstlichen Intelligenz für die Optimierung der Glasfasernetze am Beispiel einer intelligenten Stadt
Künstliche Intelligenz zur selektiven echtzeitnahen Aufnahme von Szenarien- und Manöverdaten bei der Erprobung von hochautomatisierten Fahrzeugen
Vernetzte und automatisiert fahrende Mini-Busse für die letzte Meile von der Haltestelle bis zur Haustür
Simulationsgestützte, assistenzsystem-basierende Engineering- und Maintenance-Dienstleistungen für Lean Aftersales-Services
Entwicklung eines datensparsamen und datenschutzkonformen Smart-Care-Systems durch Einsatz neuromorpher Vision-Sensoren
Neue Methoden zur Zuverlässigkeitssteigerung von hochautomatisierten elektrischen Fahrzeugen
Needs, wants and behaviour of „Drivers“ and automated vehicles users today and into the future
Datenbasierte Regelung kollaborativer Wertschöpfungsnetzwerke mittels geschützter Transparenz