ThinKIsense
Ressourceneffiziente Thin-Edge-Systeme durch integrierte KI und neuromorphe Elektronik in Sensoren
Start: 01.2021
Ende: 12.2023
Zum Nachweis der sicheren Funktion von hochautomatisierten Fahrzeugen werden nach dem aktuellen Stand der Technik fest definierte Szenarienkataloge zum manöverbezogenen Nachweis sowie mehrere Millionen Fahrkilometer umfassende Echtzeitdaten zum statistischen Nachweis herangezogen.
Zur Entwicklung neuer Fahrzeuge mit Automatisierungslevel 4-5 ist es unabdingbar, eine selektive Erfassung relevanter und kritischer Fahrsituationen, signifikanter Umgebungsdaten sowie der Rohdaten der Fahrzeugsensorik schon während des Fahrbetriebs zu erreichen. Diese Daten werden benötigt, um die durch Künstliche Intelligenz (KI) getroffenen Entscheidungen validieren, verbessern und reproduzieren zu können, mit dem Ziel, somit die notwendige Testabdeckung für zukünftige Funktionalitäten zu erreichen.
Im Rahmen des Projektes KIsSME sollen KI-basierte Algorithmen angewendet werden, die On-Board-Systeme ertüchtigen, relevante und kritische Szenarien in Echtzeit zu erkennen und hierfür selektiv Rohdaten sowie Szenarienbeschreibungen zu erfassen. Die KI-basierten Algorithmen sollen eine inhärente Lernfähigkeit ermöglichen, welche das Erkennen von kritischen Situationen und der zugehörigen relevanten Daten stetig verbessern, um für die Entwicklung von automatisierten Systemen der Level 4-5 die Informationsdichte der für die Erprobung genutzten Daten zu steigern und gleichzeitig das hierfür notwendige Datenvolumen sowie Aufwände zur Sicherstellung des Datenschutzes signifikant zu reduzieren.
In diesem Forschungsschwerpunkt liegt das Hauptaugenmerk für das FZI auf den Themen Human-Centric Artificial Intelligence und Künstliche Intelligenz zur Prädiktion. Zudem beschäftigt sich das FZI mit Fragestellungen zu dedizierter Hardware für Künstliche Intelligenz (KI) sowie KI-Engineering.
Förderhinweis:
Das Projekt KisSME wird vom Bundesministerium für Wirtschaft und Klimaschutz gefördert.
Projektpartner:
Ressourceneffiziente Thin-Edge-Systeme durch integrierte KI und neuromorphe Elektronik in Sensoren
Die Herausforderungen durch den Klimawandel aktiv angehen und als Chance für die deutsche Wirtschaft nutzen.
Zwischen Autonomie und Überwachung – Arbeitnehmer*innen-orientierter Einsatz von People Analytics in Präsenz- und Fernarbeit
Multifunktionaler Serviceroboter zur Unterstützung professioneller Pflege in Krankenhäusern
Mehr Sicherheit durch kontinuierliches Monitoring von Sicherheitsvorfällen autonom agierender Fahrzeuge
Dynamisches Demand-Response-System für eine nachhaltige Fertigung durch informationstechnische Vernetzung zur effizienten Energienutzung, -vermarktung und -erzeugung
Das House of Participation stellt die digitalen Bürger*innenbeteiligung in den Mittelpunkt.
Logistikkonzept sowie IKT-Plattform für einen zukünftigen Gütertransport in Straßenbahn- und Stadtbahnwagen
Smarte Energieversorgung im Karlsruher Osten: Ein Leuchtturmprojekt der TechnologieRegion Karlsruhe
Verfahren der Künstlichen Intelligenz für die Optimierung der Glasfasernetze am Beispiel einer intelligenten Stadt
Künstliche Intelligenz zur selektiven echtzeitnahen Aufnahme von Szenarien- und Manöverdaten bei der Erprobung von hochautomatisierten Fahrzeugen
Vernetzte und automatisiert fahrende Mini-Busse für die letzte Meile von der Haltestelle bis zur Haustür
Simulationsgestützte, assistenzsystem-basierende Engineering- und Maintenance-Dienstleistungen für Lean Aftersales-Services
Entwicklung eines datensparsamen und datenschutzkonformen Smart-Care-Systems durch Einsatz neuromorpher Vision-Sensoren
Neue Methoden zur Zuverlässigkeitssteigerung von hochautomatisierten elektrischen Fahrzeugen
Needs, wants and behaviour of „Drivers“ and automated vehicles users today and into the future
Datenbasierte Regelung kollaborativer Wertschöpfungsnetzwerke mittels geschützter Transparenz